

Yardenone and Abudinol two new triterpenes from the marine sponge *Ptilocaulis spiculifer*

Amira Rudi, Zafra Stein, Israel Goldberg, Tesfamarian Yosief and Yoel Kashman.

School of Chemistry, Tel Aviv University, Ramat Aviv 69978, ISRAEL.

Michael Schleyer

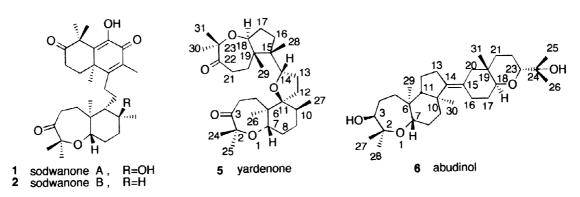
Oceanographic Research Institute (ORI), Durban, Republic of South Africa

Received 4 November 1997; accepted 12 December 1997

Abstract: Two novel triterpenes, yardenone (5) and abudinol (6) together with the known sodwanones A-D (1 - 4) have been isolated from the marine sponge Ptilocaulis spiculifer. The structures of compounds 5 and 6 were determined by interpretation of their 1D and 2D NMR spectra and were secured, including their relative stereochemistry, by X-ray diffraction analysis. © 1998 Elsevier Science Ltd. All rights reserved.

Marine organisms are a rich source of isoprenoids¹⁻³, however, only a few triterpenes all squalene-derived polyethers, have been reported⁴⁻⁵. In our continuing search for bioactive metabolites from marine invertebrates⁴, we have examined several organisms collected in the Dahlak archipelago, Eritrea, the Red Sea. Among them was the sponge *Ptilocaulis spiculifer* (Demospongiae, order Halichondria, family Axinellidae) whose lipophilic extract was cytotoxic against P-388 cells. *P. spiculifer* from the Caribbean sea was earlier investigated and reported only to contain the alkaloids ptilocaulin⁶ and ptilomycaline A⁷. None of these alkaloids were revealed in the Red Sea sponge, however, it was found to contain a variety of triterpenes. *P. spiculifer* belongs to the same Axinellidae family as *Axinella weltneri*, earlier investigated by us and found to be rich in the sodwanone triterpenes^{4c-c}. The ethyl acetate extract of the sponge contained six triterpenes, the known sodwanones A,B,C and D (1-4,0.6%, 0.1%, 0.2%, and 0.05%, respectively) and two new compounds, yardenone (5,0.1%) and abudinol (6, 0.15%) (dry wt).

Yardenone (5), analyzed for $C_{30}H_{48}O_5$ from the FABMS, m/z 489 [MH⁺] and NMR data, with seven degrees of unsaturation. As the only unsaturated funcionalities were two carbonyl groups (δ_c 216.0 s and 218.0 s) 5 had to be pentacyclic. A comparison of the NMR data of 5 (Table) with the data of the earlier reported sodwanones^{4c} suggested one half of the molecule to be closely related to the cyclohexane-oxepane system of sodwanones B and C (C-2÷C-10). Most important for the structure elucidation of these triterpenes, because of the high degree of CH_2 's overlapping in the proton NMR spectra, are the two and three bond CH_3 to vicinal carbon atom correlations. Thus, correlation from CH_3 's- 24÷27 to their vicinal carbon atoms, (Table , HMBC) supported the above suggested partial structure and in addition located a unique C-atom, resonating at 90.3s ppm, at C-11 -closing a cyclohexane ring. The low-field resonance of this carbon atom required not only its


vicinity to an oxygen atom, but also for another structural feature to bring it to resonate that low.

A second bicyclic system, i.e a cyclopentane-oxepanone system (C-15÷C-23), together with four attached methyl groups (CH₃ 's 28÷31) and a connecting methinoxy group (C-14, δ_c 84.8, δ_H 3.75) were also suggested on the basis of 2D-NMR data (Table). Combining C-14 and C-11, in a spiro configuration, by a THF ring completed the structure of 5. The suggested structure including the relative stereochemistry was unequivocally determined by an X-ray diffraction analysis⁸. The structure was solved by direct methods (SHELX-97)⁹, no corrections for absorption and secondary extinction effects were applied. The final refinement , based on F², converged at R=0.046 for 1800 observations having F_o >4 σ (F_o) and R=0.063 (wR2=0.138) for 2350 unique data. At convrgence, S=0.86 and $|\Delta \rho| \le 0.17e$. Å⁻³.

The second new compound designated abudinol (6) analyzed for $C_{30}H_{50}O_4$ from the FABMS, m/z 475 [MH⁺], and NMR data (Table). Out of the six degrees of unsaturation, of 6, one applied for a tetrasubstituted double bond (δ_c 120.0s and 143.6s) and the other five pointed to a pentacyclic structure. Contrary to compounds 1-5 abudinol possesses only seven, rather than eight, methyl groups. 2D-NMR experiments (Table) suggested a cyclohexane-oxepanol ring system (C-2÷C-11), which, based on H,H and C,H correlations (Table), could further be expanded by a cyclopentane ring (C-12 to C-14).

2D NMR data of the second half of the molecule established its cyclohexane-tetrahydropyrane structure as well as the C-23 dimethylcarbinol substituent and the C14=C15 attachment of the two parts. Most important for the structure elucidation were the Me-30 to C-14 and Me-31 to the allylic C-20 protons, *vide supra*.

Further support for the structure of abudinol came from the ozonolysis of 6 which split the molecule into two halves, namely, a C₁₇H₂₈O₃ m/z 280 and a C₁₃H₂₂O₃ m/z 226 segment. Each half possessed the expected NMR data, reminiscent to the corresponding atoms in the two parts of 6 and characteristic IR absorptions at 1734 and 1707cm⁻¹, respectively, confirming unequivocally the five and six membered rings. As with 5 the high methylene-signals overlapping, in the NMR spectrum of 6, made it difficult to determine the configuration of the double bond and the complete relative stereochemistry. The structure was solved by direct X-ray diffraction analysis methods¹¹, and refined by full matrix least-squares (SHELX-97)⁹. Refinement of the structural

based on F^2 , excluding the solvent atoms, converged at R=0.13. The "Squeeze/Bypass" procedure was then used to subtract the overall contribution of the disordered solvent to the diffraction pattern from the observed data¹⁰. Application of this technique allowed convergence of the refinement based on the Squeeze-modified data set down to R=0.078 for 1647 observations having $F_o > 4\sigma$ (F_o) and R=0.104 (wR2 = 0.219) for 2524 unique data. Non-hydrogen atoms were treated anisotropically. All hydrogen atoms were located in calculated positions, the methyls being treated as rigid groups; the hydroxyl H could not be positioned. The terminal i-Pr group appeared to be partly disordered as well, due to the possibility of unhindered rotation about a C-C bond which connects this substituent to the molecular framework; the three terminal C and O atoms were thus assigned an isotropic U in the final calculations.

NMR Data Of Yardenone (5, in CDCl₃) And Abudinol (6, in C₆D₆)

		5	6			
No	¹³ C	HMQC	НМВС	¹³ C	нмос	НМВС
2	82.7s	-	7,24,25	73.7s	-	7,27,28
3	218.0s	-	4a,b,5a,24,25	76.7d	3.52d	5a
4	35.6t	3.08t,2.25dd		20.7t	1.65,1.45	
5	32.1t	1.90, 1.42		35.5t	1.75,1.32	
6	45.6s	-	26	41.2s	-	7,29
7	76.9d	3.25dd	26	76.8d	3.82dd	29
8	28.5t	1.62, 1.55		28.9t	1.90,1.70	7
9	28.4t	1.82, 1.82	27	37.3t	2.24,1.65	7,30
10	35.8d	1.74	27	44.8s	-	30
11	90.3s	-	26,27	59.6d	1.41	29,30
12	30.5t	1.60,1.60		25.7t	2.08, 1.62	
13	26.2t	1.75,1.35		30.5t	2.42, 2.35	
14	84.8d	3.75dd	28	143.6s	_	12b,13a,b,16a,b,17b,20a,b,30
15	48.8s	-	14,28,29	125.6s	-	13a,b,16,b,17a,b,20a,b
16	26.3t	1.78,1.38	18,28	27.6t	2.88 bd	
17	28.9t	1.70,1.50		29.1t	1.85, 1.62	
18	82.0d	4.02t	29	76.3d	3.78dd	31
19	48.3s	-	20a,21b,29	35.3s	-	31
20	31.5t	1.70,1.42	29	44.2t	2.21, 1.55	31
21	35.0t	3.12t		35.4t	1.64, 1.34	18,31
22	216.0s	-	20a,b,21a,b,30,31	20.0t	1.75, 1.65	
23	81.6s	-	18,30,31	78.1d	3.65dd	25,26
24	20.3q	1.24s	25	77.8s	_	25,26
25	27.0q	1.21s	24	26.7q	1.34s	26
26	15.2q	1.06s	7	26.2q	1.18s	25
27	17.8q	0.90d		21.9q	1.33s	28
28	20.9q	0.79s		28,8q	1.20s	27
29	15.7q	1.00s	18	13.9q	1.14s	7
30	21.9q	1.28s	31	20.1q	1.10s	
31	26.3q	1.24s	30	18.4q	1.09s	18

Acknowledgements: We acknowledge gratefully the identification of the sponge by Dr. R.W.M van Soest, and financial support by Biomar S.A Leon, Spain.

ORTEP representations of compounds 5 and 6

References and Notes

- 1. Faulkner, D.J. J.Nat. Prod. Rep. 1997, 14, 259-302, and earlier reports in this series.
- 2. Cimino, G.; De stefano, S.; Minale, L. Tetrahedron, 1992, 28,1315-1319.
- 3. a. Isaacs, S.; Kashman, Y. Tetrahedron Lett, 1972, 33, 2227-2230. b. Isaacs, S.; Hizi, A.; Kashman, Y. Tetrahedron, 1993,49, 4275-4282.
- a. Carmely, S.; Kashman, Y. J. Org. Chem., 1983, 48,3517-3525.
 b. Cimino, G.; Crispino, A.; Madaio, A.; Trivellone, E. J. Nat Prod, 1993, 56,534-538.
 c. Rudi, A.; Kashman, Y.; Benayahu, Y.; Schleyer, M. J Nat. Prod, 1994, 57,1416-1423
 d. Rudi, A.; Goldberg, I.; Stein, Z.; Kashman, Y. J Nat. Prod, 1995, 58,1702-1712.
 e. Rudi, A.; Aknin, M.; Gaydou, E.; Kashman, Y. J Nat. Prod, 1997, 60, 700-703.
- a. Suzuki, T. J Suzuki, M.; Furusaki, A.; Matsumoto, T.; Kato, A.; Imanaka, Y.; Kurosawa, E. Tetrahedron lett, 1985, 26, 1329-1332. b. Suzuki, T.; Takeda, S.; Suzuki, M.; Kurosawa, E.; Kato, A.; Imanaka, Y.Chem.Lett. Jpn. 1987, 361-364. c. Sakemi, S.; Higa, T.; Jefford, C.W.; Bernardinelli, G.; Tetrahedron Lett 1986, 27, 4287-4290. d. Matsuo, Y.; Suzuki, M.; Masuda, M. Chem.Lett 1995, 1043-1044. e. Norte, M; Fernandez, J.; Sonto, M.; Garcia-Gravalos, M.; Tetrahedron Lett. 1996, 37,2671-2674.
- 6. Harbour, G.C.; Tymiak, A.A.; Rinehart, K.L.; Shaw, P.D.; Hughes, R.G., Mizsak, S.A.; Coats, J.N.; Zurenko, G.E.; Li, L.H.; Kuentzel, S.L. J.Am.Chem Soc., 1981, 103, 5604-5608.
- 7. Ohtani, I.; Kusumi, T.; Kakisawa, H.; Kashman, Y.; Hirsh, S. J. Am. Chem Soc. 1992, 114, 8472-8479.
- 8. The X-ray diffraction measurements were carried out at ca. 295 K on an automated CAD4 diffractometer equipped with a graphite monochromator, using MoK α (λ =0.7107 Ű) radiation. Intensity data were collected by the ω -20 scan mode. The structure was solved by direct methods, and refined by full-matrix least-squared (SHELX-97)⁹ Non-hydrogen atoms were treated anisotropically. All hydrogen atoms were located in calculated positions. Crystal data C₃₀H₄₈O₅, formula weight 488.71, monoclinic, space group $P2_1$, α = 10.296(3), b = 13.270(4), c =11.0.58(2) Å, β = 113.21(2)°, V=1388.55 ų, Z=2, D_{calc} = 1.169 g.cm⁻³, F(000) = 536, μ (MoK α) = 0.77 cm⁻¹.
- 9. Sheldrick.G.M. SHELX-97. Program package for the Solution and Refinement of Crystal Structures form Diffraction Data, University of Goettingen, Germany, 1997.
- 10. Van der Sluis, P.; Speck, A.L. Acta Crystallogr. Section A 1990, 46, 194-201.
- 11. The compound crystallized as 2:1 ethyl acetate solvate. X-ray diffracion measurements were carried out as described for 5. Crystal data: $C_{30}H_{50}O_4$. ½($C_4H_8O_2$), formula weight 518.78, monoclinic, space group $P2_1$, $\alpha = 13.645(4)$, b = 7.515(2), c = 14.776(5) Å, $\beta = 93.02(2)^\circ$, V=1513.06 Å³, Z=2, $D_{calc}=1.134$ g.cm⁻³, F(000) = 568, $\mu(MoK\alpha) = 0.74$ cm⁻¹.